Curriculum Map
 Name of Teacher: Br. Hassan
 Subject : Algebra

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	
	Unit1: -Solving Linear Equations -Solving Linear Inequalities -Rate of Change and Slope -Writing Linear Equations -Graphing Linear Inequalities -Solving Systems of Equations	Unit2: -Functions and Continuity -Linearity and Symmetry -Extrema and End behavior -Sketching graphs of functions -Graphing special functions -Transformation of functions -Solving equations by graphing	Unit 3: -Graphing Quadratic Functions -Solving Quadratic Equations by Graphing -Complex Numbers -Solving Quadratic Equations by Factoring -Solving Quadratic Equations by Completing the Square -The Quadratic Formula and the Discriminant -Quadratic Inequalities	Unit 4 -Operations with Polynomials -Powers of Binomials -Dividing Polynomials -Graphing Polynomial Functions	Unit 4, 5 -Analyzing Graphs of Polynomial Functions -Solving Polynomial Equations -The Remainder and Factor Theorem -Roots and Zeros -Operations with Functions -Composition of Functions -Inverse Functions and Relations	

	SWBAT: -Translate verbal expressions into algebraic expressions and equations, and vice versa. -Solve equations using the properties of equality. -Solve one-step \& multi step inequalities -Find rate of change \& determine slope of a line. -Write an equation of a line given the slope and a point on the line -Write an equation of a line parallel or perpendicular to a given line -Graph linear inequalities and apply linear inequalities. -Solve systems of linear equations graphically/algebraically. -Solve systems of linear inequalities by graphing	SWBAT: -Determine whether functions are one-to-one and/or onto. -Determine whether functions are discrete or continuous. -Identify linear and nonlinear functions by examining equations or graphs. -Determine whether graphs of functions have line or point symmetry. -Identify end behavior of graphs. -Identify extrema of functions. -Use the key features of functions to sketch graphs of linear functions. - Use the key features of functions to sketch graphs of nonlinear functions. -Graph and analyze piecewisedefined functions. -Graph and analyze step and absolute value functions. -Identify the effects on graphs of functions by replacing $f(x)$ with $f(x)+k$ and $f(x-h)$ for positive and negative values. -Identify the effects on graphs of functions by replacing $f(x)$ with $a f(x), f(a x),-a f(x)$, and $f(-a x)$. -Find x - and y-intercepts. -Solve equations by examining graphs of the related functions.	SWBAT: - Graph quadratic functions. - Find and interpret the maximum and minimum values of a quadratic function. - Solve quadratic functions by graphing. - Estimate solutions of quadratic equations by graphing. - Perform operations with pure imaginary numbers. - Perform operations with complex numbers. - Write quadratic equations in standard form. - Solve quadratic equations by factoring. - Solve quadratic equations by using the Square Root Property. - Solve quadratic equations by completing the square. - Solve quadratic equations by using the Quadratic Formula. - Use the discriminant to determine the number and type of roots of a quadratic equation. - Graph quadratic inequalities in two variables. - Solve quadratic inequalities in one variable.	SWBAT: - Multiply, divide, and simplify monomials and expressions involving powers. - Add, subtract, and multiply polynomials. - Use Pascal's triangle to expand powers of binomials. - Use the Binomial Theorem to expand powers of trinomials. - Divide polynomials using long division. - Divide polynomials using synthetic division. - Evaluate polynomial functions. - Identify general shapes of graphs of polynomial functions.	SWBAT: - Graph polynomial functions and locate their zeros. - Find the relative maxima and minima of polynomial functions. - Factor polynomials. - Solve polynomial equations by factoring. - Evaluate functions by using synthetic substitution. - Determine whether a binomial is a factor of a polynomial by using synthetic substitution. - Determine the number and type of roots for a polynomial equation. - Find the zeros of a polynomial function. - Perform arithmetic operations with functions. - Apply arithmetic operations with functions. - Perform compositions of functions. - Apply compositions of functions. - Find the inverse of a function or relation. - Determine whether two functions or relations are inverses.	

- How can you translate verbal expressions into algebraic expressions and equations?
- Is it possible to solve systems of linear equations or systems of inequalities graphically?
- How do you find the maximum and minimum values of a
function over a region?
- How can you use what you have learned to solve one-step and multistep inequalities?
- In what way could you use linear programming to solve real-world optimization problems?
- How do you find the rate of change?
- What method would you use to
determine the slope of a line?
- How do you write an equation of a line given the slope and a point on the line?
- In what way can you graph linear inequalities?
- Can you determine the coordinates of the vertices of a region formed by the graph of a system of inequalities?
-How do you know a relation is a function?
-What is the difference between a one-to-one function and an onto function?
- What is the difference between the graph of a discrete relation and that of a continuous relation?
-How can you use algebra to show that $4 x-5 y=16$ is a linear function?
-How to find the b in the equation $f(x)=m x+b$, given a point?
-How do we show that an equation is non linear algebraically?
- How to identify symmetry? -How do you find the end behavior of a function?
- Is there a difference to finding end behavior of linear function than nonlinear functions?
-How to find the extrema from the graph?
-What are some key features that you can use to help you sketch a graph?
-What is the difference between a linear function and a nonlinear function?
-What are some different types of nonlinear functions that you have seen?
-How can you use intercepts to sketch the graph of a linear function?
-What is the difference between a continuous function and a piecewise function?
-Are all step functions piecewise functions?
-Explain the difference in writing the domain and range for a piecewise function compared to a continuous function? -Can a step function have two data points the same in the range?
-How is a parent graph related to a parent function?
- Look at the exponen
laws in the Concept Summary. Which ones are similar?
- Which exponent law do you find the easiest? Which one do you find the hardest to understand? Why?
How to operate with
exponents?
- What do you notice about Pascal's triangle? Discuss the structure of it. x on one side of the inequality?
- After studying the structure of Pascal's triangle, try writing it out without looking in your textbook. What strategies help you?
- Write out the Binomial Theorem. What strategies can you use to help you remember and make sense of this theorem?
- When can you use the Binomial Theorem and not Pascal's triangle?
- What do you do before performing long division on a polynomial if the terms are not organized in descending order? For example, what would you do with $8 \mathrm{x}+9 \mathrm{x} 2+7+$
14×3 before dividing it by $\mathrm{x}+2$?
- Is it possible to do long division on a polynomial that does not include all of the terms in descending order? For example, one that includes an $x 3-$ and an x 2 - but no x -term. If it is possible, explain what you must do?
- What strategies do you use to make sure that you remember to subtract the polynomial you multiply hrough when doing long division, instead of adding
- How can you determine where the function crosses the x -axis?
- What is the difference between a relative maximum and an extreme maximum?
- What is a turning point?
- What do you think you will know about a polynomial when it is completely factored?
- Expand $(a+b) 3$. What is the resulting polynomial?
- How can you simplify a3 $+3 \mathrm{a} 2 \mathrm{~b}+3 \mathrm{ab} 2+$ b3 ?
- In division, what does a remainder of zero tell you?
- In synthetic division, how would you write the quotient when the remainder is R $?$
- If $x-r$ is a factor of polynomial $P(x)$ how does that help you rewrite $\mathrm{P}(\mathrm{x})$ in factored form?
- Suppose that you have a list of all the zeros, $\{x 1, x 2, x 3\}$, of a polynomial function, $\mathrm{p}(\mathrm{x})$. What is the degree of $\mathrm{p}(\mathrm{x})$?
- Suppose that you have a list of all the zeros, $\{x 1, x 2, x 3, x 4, x 5\}$, of a polynomial function, $\mathrm{p}(\mathrm{x})$. What are the factors of $\mathrm{p}(\mathrm{x})$?

If one of the factors of $\mathrm{p}(\mathrm{x})$ is $\mathrm{a}+\sqrt{\mathrm{b}}$, what must be true?

- What can you say about the sum or difference of two linear functions, what about quadratics?
- In general, how do you determine the domain of a function?
- What is the domain of any polynomia function?
- When you divide two functions, how do you determine the domain of the resulting function?
- How is $[\mathrm{f} \circ \mathrm{g}](\mathrm{x})$ different from $[\mathrm{g} \circ \mathrm{f}](\mathrm{x})$?
- How is evaluating an expression like f [$\mathrm{g}(5)]$ similar to working with the order of operations?
- How do you find the inverse of function?
- Why are some inverses of functions not functions?

	-Group problem solving -Solo silence problem solving -Warm Up for connecting ideas - Questions to stimulate the concepts where they rise -Practice guided examples by students.	-Practice guided examples -Solo problem solving $3 / 5 \mathrm{mins}$ -Warm Up to connect ideas $-\mathrm{Q} \& A$ to rise and stimulate understanding? -Why you are learning this activity	-Practice guided examples -Solo problem solving $3 / 5 \mathrm{mins}$ -Warm Up to connect ideas $-\mathrm{Q} \& A$ to rise and stimulate understanding? -Why you are learning this activity	-Practice guided examples -Solo problem solving 3/5 mins -Warm Up to connect ideas -Q \& A to rise and stimulate understanding? -Why you are learning this activity	-Practice guided examples -Solo problem solving $3 / 5 \mathrm{mins}$ -Warm Up to connect ideas -Q \& A to rise and stimulate understanding? -Why you are learning this activity	
	-Summary of lesson (What did you learn) -Quiz -Homework -In class Q\&A check understanding -Exit tickets	Summary of lesson (What did you learn) -Quiz -Homework -In class Q\&A check understanding -Exit tickets -Extra practice, ask individual students to answer and give steps and reasons	Summary of lesson (What did you learn) -exam -Homework -In class Q\&A check understanding -Exit tickets -Extra practice, ask individual students to answer and give steps and reasons	Summary of lesson (What did you learn) -exam -Homework -In class Q\&A check understanding -Exit tickets -Extra practice, ask individual students to answer and give steps and reasons	Summary of lesson (What did you learn) -exam -Homework -In class Q\&A check understanding -Exit tickets -Extra practice, ask individual students to answer and give steps and reasons	
	3 Weeks	4 weeks	4 weeks	3 weeks	4 weeks	
$\begin{aligned} & \text { © } \\ & \text { O} \\ & \text { O} \\ & \text { O} \\ & \text { 区 } \end{aligned}$	-McGraw Hill Book 2018 -algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2	-McGraw Hill Book 2018 -algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2 -Algebraflipped.com	-McGraw Hill Book 2018 -algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2 -Algebraflipped.com	-McGraw Hill Book 2018 -algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2 -Algebraflipped.com	-McGraw Hill Book 2018 -algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2 -Algebraflipped.com	
	Textbook Pages: $5,13,21,29,35,43$	Textbook Pages 85, 95, 103, 111, 119, 125, 133	Textbook Pages 151, 163, 173, 179, 191, 199, 209	Textbook Pages 229, 237, 243, 253	Textbook Pages $263,275,287,293,315,323,329$	

	FEBRUARY	MARCH	APRIL	MAY	JUNE	
	Unit 5, 6: - Operations with Functions -Graphing Cube Root Functions - Solving Radical Equations - Graphing Exponential Functions - Solving Exponential Equations and Inequalities - Geometric Sequences and Series - Logarithms and Logarithmic Functions	Unit 6, 7: -Modeling Data - Properties of Logarithms -Common Logarithms -Natural Logarithms -Solving Logarithmic -Equations and Inequalities -Using Logarithms to Solve Exponential Problems -Multiplying and Dividing Rational Expressions -Adding and Subtracting Rational Expressions -Graphing Reciprocal Functions	Unit 7, 8 -Graphing Rational Functions -Variation Functions -Solving Rational Equations and Inequalities -Random Sampling -Using Statistical Experiments -Population Parameters -Distributions of Data -Normal Distributions -Using Probability to Make Decisions	Unit 9 -Trigonometric Functions in Right Triangles - Angles and Angle Measure - Trigonometric Functions of General Angles -Circular and Periodic Functions -Graphing Trigonometric Functions -Translations of Trigonometric Graphs	Unit 10 and Finals review -Trigonometric Identities -Verifying Trigonometric Identities. -Final exam review and concepts review	

	SWBAT: - Graph square root functions. - Analyze square root functions. - Graph cube root functions. - Analyze cube root functions - Solve equations containing radicals. - Solve inequalities containing radicals. - Graph exponential growth functions. - Graph exponential decay functions. - Solve exponential equations. - Solve exponential inequalities. - Use geometric sequences. - Find sums of geometric series. - Evaluate logarithmic expressions. - Graph logarithmic functions.	SWBAT: - Find equations of best fit for data modeled by exponential and logarithmic functions. - Choose the best model for a data set. - Simplify and evaluate expressions using the properties of logarithms. - Solve logarithmic equations using the properties of logarithms. - Solve exponential equations and inequalities using common logarithms. - Evaluate logarithmic expressions using the Change of Base Formula. - Evaluate expressions involving the natural base and natural logarithm. - Solve exponential equations and inequalities using natural logarithms. - Solve logarithmic equations. - Solve logarithmic inequalities. Use logarithms to solve problems involving exponential growth and decay. - Use logarithms to solve problems involving logistic growth. - Simplify rational expressions. - Simplify complex fractions - Determine the LCM of polynomials. - Add and subtract rational expressions. - Determine properties of reciprocal functions. - Graph transformations of reciprocal functions.	SWBAT: - Graph rational functions with vertical and horizontal asymptotes. - Graph rational functions with oblique asymptotes and point discontinuity. - Recognize and solve direct and joint variation problems. - Recognize and solve inverse and combined variation problems. - Solve rational equations. - Solve rational inequalities. - Distinguish among sample surveys, experiments, and observational studies. - Make inferences about population parameters based on random samples of the population. - Collect and analyze data by conducting simulations of reallife situations. - Use data to compare theoretical and experimental probabilities. - Use data from sample surveys to estimate population means or proportions. - Develop margins of error by using simulation models. - Use the shapes of distributions to select appropriate statistics. - Use the shapes of distributions to compare data. - Use the Empirical Rule to analyze normally distributed variables. - Apply the standard normal distribution and z -values.	SWBAT: - Find values of trigonometric functions. - Use trigonometric functions to find side lengths and angle measures of right triangles. - Draw and find angles in standard position. - Convert between degree measures and radian measures. - Find values of trigonometric functions for general angles. - Find values of trigonometric functions by using reference angles. - Find values of trigonometric functions based on the unit circle. - Use the properties of periodic functions to evaluate trigonometric functions. - Describe and graph the sine, cosine, and tangent functions. - Describe and graph other trigonometric functions. - Graph horizontal translations of trigonometric graphs and find phase shifts. - Graph vertical translations of trigonometric graphs.	SWBAT: - Use trigonometric identities to find trigonometric values. - Use trigonometric identities to simplify expressions. - Verify trigonometric identities by transforming one side of an equation into the form of the other side. - Verify trigonometric identities by transforming each side of the equation into the same form. - Project discussion about trigonometry -Review sessions for key concept -Polynomials -Rational exps -Logs/Exponential functions -Sin/cos curves	

	- How can real-world data be modeled by exponential growth and exponential decay functions?
	- How do you find equations of best fit for data modeled by exponential and logarithmic functions?
- Given a data set, how do you choose the best	
model?	

Can the vertical asymptote cross the y-axis?
Can the horizontal asymptote
cross the x-axis?

- How do you find the zeros of the problem?
- How do you find the asymptote? - How can a graph illustrate the relationship between two values?
- What variable must stay the same to create a direct variation?
-What is the first step in solving a proportion?
- How do you solve a rational equation or rational inequality?.
- What is an extraneous solution?
-What is an important step in solving rational equations or rational inequalities that model real world situations?
- How does the sample differ in an experiment compared to a survey or observational study?.
- Why is it important for a sample to be random?.
- How do you find a sample proportion?
- How do you use a sample proportion to find the corresponding population parameter?
- How do you design a simulation?
- How do you design a simulation that uses random numbers to generate data?
- Why is a bar graph a good way to report the findings after conducting a simulation?
- How do you determine the average response of a population survey?
- What do the population mean and population proportion have in common?
- Why do you multiply by 100 for the margin of error formula?
- How do you tell which side is the hypotenuse
- Which is the side opposite θ ?
- Which is the side adjacent θ ?
-What information are you given?
- How do you determine which trigonometric function to apply?
- Draw the diagram you see on the first page of this lesson. Where do you always find the initial side of an angle in standard position?
- Where do you find the terminal side of the angle?
- What is between the initial side and the terminal side of the angle?
- Which is the positive direction for an angle in standard position?
- Which is the negative direction for an angle in standard position?
- What are the base and height of the triangle called in the Pythagorean Theorem for triangles?
- What are the base and height of the triangle called in the Pythagorean Theorem for the radius of circles?
- What is the hypotenuse called in the Pythagorean Theorem for triangles?
- What is the hypotenuse called in the Pythagorean Theorem for the radius of a circle?
- Write the Pythagorean Theorem for triangles.
- Write the Pythagorean Theorem for the radii of circles.
- Have students copy the unit circle from this lesson. As they work through, ask them to make note of any patterns they see. Ask the following guiding questions:
- What pattern do you notice in the sine values for $30,150,210$, and 330 degrees?
-What pattern do you notice in the sine and cosine values for $45,135,225$, and 315 degrees?
- In what quadrant are all values positive?
- In what quadrant are all values negative?
- Do you think you will be able to remember and compare the lesson's graphs better by drawing them in a concept diagram, or a chart?
- Use two colors. Draw a sine graph and its image that results from a phase shift. Write the equation that causes the shift. What are some interesting features of the graph?
- How are the Pythagorean identities derived using the unit circle?
- How can you explain the cofunction identities using a right triangle?
- How would you check to see if $\boldsymbol{x}=5$ is a solution to $5 \boldsymbol{x}-4=$ 20? Is $\boldsymbol{x}=5$ a solution? Why or why not?
- To verify identities, what could you do?
- If the sides are not equal, what do you know?

	-Practice guided examples -Solo problem solving $3 / 5 \mathrm{mins}$ -Warm Up to connect ideas $-\mathrm{Q} \& A$ to rise and stimulate understanding? -Why you are learning this activity	-Practice guided examples -Solo problem solving $3 / 5 \mathrm{mins}$ -Warm Up to connect ideas $-\mathrm{Q} \& \mathrm{~A}$ to rise and stimulate understanding? -Why you are learning this activity	-Practice guided examples -Solo problem solving $3 / 5$ mins -Warm Up to connect ideas -Q \& A to rise and stimulate understanding? -Why you are learning this activity	-Practice guided examples -Solo problem solving $3 / 5 \mathrm{mins}$ -Warm Up to connect ideas -Q \& A to rise and stimulate understanding? -Why you are learning this activity	-Practice guided examples -Solo problem solving $3 / 5$ mins -Warm Up to connect ideas -Q \& A to rise and stimulate understanding? -Why you are learning this activity	
	Summary of lesson (What did you learn) -exam -Homework -In class Q\&A check understanding -Exit tickets -Extra practice, ask individual students to answer and give steps and reasons	Summary of lesson (What did you learn) -exam -Homework -In class $\mathrm{Q} \& \mathrm{~A}$ check understanding -Exit tickets -Extra practice, ask individual students to answer and give steps and reasons	Summary of lesson (What did you learn) -exam -Homework -In class Q\&A check understanding -Exit tickets -Extra practice, ask individual students to answer and give steps and reasons	Summary of lesson (What did you learn) -exam -Homework -In class Q\&A check understanding -Exit tickets -Extra practice, ask individual students to answer and give steps and reasons	-Summary -Homework -Exit tickets -Final project -Quiz	
	Textbook Pages: $\begin{aligned} & 339,345,353,373,383,391 \text {, } \\ & 397 \end{aligned}$	Textbook Pages: 405, 417, 423, 431, 437, 445, 467, 477, 483	Textbook Pages: 491, 501, 509, 531, 539, 545, 551, 567, 573	Textbook Pages: $595,605,613,621,627,635$	Textbook: 653, 663	
	4 Weeks	4 Weeks	4 Weeks	4 Weeks	2 weeks	
	-McGraw Hill Book 2018 -algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2 -Algebraflipped.com	-McGraw Hill Book 2018 -algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2 -Algebraflipped.com	-McGraw Hill Book 2018 algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2 -Algebraflipped.com	-McGraw Hill Book 2018 -algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2 -Algebraflipped.com	-McGraw Hill Book 2018 -algebra2.flippedmath.com -ENGAGENY -KuftaSoftware Algebra 2 -Algebraflipped.com	$\begin{aligned} & \text { 刃刃 } \\ & \text { O } \\ & \stackrel{\text { O}}{0} \\ & \text { © } \end{aligned}$

Curriculum Map
Name of Teacher
Subject

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	
	Students will be able to:					

	FEBRUARY	MARCH	APRIL	MAY	JUNE	

Curriculum Map
Name of Teacher
Subject \qquad

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	
	Students will be able to:					

	FEBRUARY	MARCH	APRIL	MAY	JUNE	

Curriculum Map
Name of Teacher
Subject

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	
	Students will be able to:					

	FEBRUARY	MARCH	APRIL	MAY	JUNE	

Curriculum Map
Name of Teacher
Subject

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	

	Students will be able to:						

	FEBRUARY	MARCH	APRIL	MAY	JUNE	

Curriculum Map
Name of Teacher
\qquad

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	
						㖪
	Students will be able to:					

	FEBRUARY	MARCH	APriL	MAY	JUNE	

Subject

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	
	Students will be able to:					

	FEBRUARY	MARCH	APriL	MAY	JUNE	

Curriculum Map
Name of Teacher
Subject \qquad

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	
	Students will be able to:					

	FEBRUARY	MARCH	APriL	MAY	JUNE	

Subject

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	
	Students will be able to:					

	FEBRUARY	MARCH	APriL	MAY	JUNE	

Curriculum Map
Name of Teacher
Subject \qquad

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	JANUARY	
	Students will be able to:					
						$\stackrel{8}{8}$ た玄 등 든 들 떼운

	FEBRUARY	MARCH	APriL	MAY	JUNE	

